报告题目:Quaternion tensor singular value decomposition using a flexible transform-based approach
报 告 人:缪吉飞
研究方向:计算数学:图像处理
报告题目:Multiple geometric discrete spectral problem for Sasa-Satsuma equation via Riemann-Hilbert approach
报告人:陈愫素
研究方向:可积系统及其应用
摘要:Inverse scattering problem of the high-order zeros scattering data is one of the hot issues in the study of discrete spectra in the inverse scattering transform method. This report will introduce the relevant progress in the study of discrete spectra in the inverse scattering transform method of integrable systems, including multiple algebraic discrete spectra, multiple geometric discrete spectra and asymptotic analysis of the non-elementary higher-order-zeros solitons. Further, we will study the multiple geometric discrete spectral problem of the Sasa-Satsuma equation via combining the inverse scattering transform method based on Riemann-Hilbert problem with the Darboux transformation induced by a rank-r (r>1) projection matrix.
时 间:2023年3月29日周三16:00——18:00
地 点:必赢76net线路格物楼3103报告厅
欢迎广大师生参加!